Telegram Group & Telegram Channel
Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/963
Create:
Last Update:

Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/963

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA